A Resilient Architecture for DHT-based Distributed
Collaborative Environments

Simone Cirani, Natalya Fedotova, Luca Veltri
University of Parma (ltaly)
Viale G.P. Usberti 181/A
1-43100 Parma - Italy

{simone.cirani, fedotova}@tlc.unipr.it, luca.veltri@unipr.it

ABSTRACT

Distributed Hash Tables (DHTs) provide a flexible and reliable
infrastructure for data storage and retrieval in peer-to-peer
communities. We propose to apply Kademlia DHT to organize
data management and cooperation between users participating in
different work-groups. Particularly, in this paper we propose a
mechanism for increasing the resilience and the overall
performance of a Kademlia-based distributed work-sharing
system, taking into account frequent joins and leaves of network
nodes. To achieve this goal we propose a new flexible scheme for
resource management that provides more resilience and fault
tolerance than other mechanisms used by existent cooperative
storage systems with a collaborative nature. In this work we try to
extend and generalize our solution to fit several application
contexts of collaborative computing, thereby addressing some
common problems about resilience of existent distributed
collaborative systems.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and
Software — distributed systems, performance evaluation.

General Terms
Algorithms, Performance, Design, Security.

Keywords

Distributed Hash Tables, resilience, fault tolerance, collaborative
computing, peer-to-peer.

1. INTRODUCTION

Currently, Distributed Hash Tables are widely used by a number
of peer-to-peer (P2P) applications as data storage and retrieval
infrastructure. DHT mechanisms are realized on the overlay layer
by building up a virtual (logical) communication scheme above
the existent network topology [1].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

SERENE 2008, November 17-19, 2008, Newcastle, UK.

Copyright 2008 ACM 978-1-60558-275-7/08/11...\$5.00.

In a DHT-based P2P system, a group of distributed hosts
collectively manage mapping from keys to data values according
to some specific algorithm. Some well-known DHT algorithms
are Chord [2], Kademlia [3], Pastry [4], Tapestry [5], etc. DHTs
provide efficient routing performance, high scalability, self-
organizing data storage and lookup mechanisms.

In our previous work [6] we tried to extend the limits of
application of DHT mechanisms from data storage and retrieval in
distributed computer systems to collaborative computing context.
We proposed to apply Kademlia DHTs to organize data
management and cooperative work between geographically
distant users of enterprise networks engaged in a common task in
real-time and transparent mode. The presented solution was meant
to create a distributed work-sharing system which allows data
produced by some department to be maximally available for other
interested entities in accordance with a predefined policy of
attribution of different data access privileges to users from various
departments of the same organization.

In this paper we propose a new DHT-based architecture for
collaborative computer systems improving the previous solution
and focusing on the following objectives:

- increase of the resilience and the overall performance of the
system in the presence of frequent joins and leaves of network
nodes;

- enhancement of the fault tolerance and security components
of the proposed solution;

- generalization of the proposed solution to fit other application
contexts of collaborative computing (besides hierarchical
enterprise environments) with the purpose to address some
resilience problems that are common for most distributed
collaborative systems.

In order to increase the DHT performance, we decided to
decouple the information maintained by the DHT and the actual
data shared by network nodes in a group-based fashion. This
approach lets us remove the group-based ID-assignment presented
in the previous solution. This results in a single and larger ID
space without any hierarchy, and as a consequence, we obtain an
increase of node cooperation, resilience and fault tolerance of the
system. We call it “resource management in a unique DHT”.

To enforce security, we extend the original Kademlia protocol
procedures with a certificate-based challenge-response
authentication protocol to achieve effective DHT protection
against different possible attacks. The same certificate-based

mechanism is used to encrypt DHT operational communications,
when required, providing complete privacy guarantee.

At application level, the same user certificates are used to
guarantee end-to-end application security (access control,
authentication, confidentiality). Particularly, access control is
implemented by introducing specific access policies associated to
different user work-groups. This allows authorized users to access
only resources for which they have appropriate access rights.

The proposed architecture has been also implemented in a
demonstrative testbed as described below.

In section 2 we discuss resilience properties of different DHT
algorithms and shortcomings of some existing distributed
collaborative systems due to the DHT mechanisms applied.
Section 3 recalls our previous work on the Kademlia-based
collaborative system for hierarchical environments. In Section 4
we extend and generalize our previous solution in order to address
some resilience and fault tolerance issues of distributed
collaborative systems based on DHTs. Sections 5 and 6 define the
certificate-based mechanisms to enforce DHT protection and
application-layer security. The implementation details of the
proposed approach are presented in section 7. Finally, in section 8
we draw some conclusions.

2. BACKGROUND AND MOTIVATIONS
Recently, a great number of P2P platforms, distributed computing
and cooperative storage systems have adopted lookup and routing
mechanisms based on Distributed Hash Tables (eDonkey,
BitTorrent, CFS, OceanStore). DHT mechanisms allow to realize
a self-organizing system with efficient routing performance, high
accuracy of search, high scalability and automatic load balancing.
At the same time different DHT-based algorithms offer different
levels of system resilience. Let’s consider some examples.

2.1 Resilience through DHT mechanisms

The resilience of a Chord-based network is strictly tied to the
routing scheme based on a node’s knowledge of its predecessor
and successor in the identifier space. Each node in Chord
maintains two data structures: a “successor list” (which is the list
of peers immediately succeeding the node identifier) and a “finger
table” (which contains Chord IDs and IP addresses of peers at
exponential distances around the ID space from the node, in a
data structure that resembles a skip-list) [2]. To locate every key
in the network at any moment each node’s successor and
predecessor pointers and finger lists should be correctly
maintained and perfectly updated in order to reflect any single
procedure within the DHT. This becomes quite a difficult task due
to the dynamical nature of P2P systems, where nodes join and
leave the network in an unpredictable manner. So, to avoid
failures of lookup processes, nodes should call stabilize() and
check_predecessor() RPCs to periodically repair the routing table
entries. When a node n; fails, nodes whose finger tables include n;
must find n;’s successor in order to prevent the disruption of
queries that are already in progress, i.e. to provide the
convergence of lookup algorithms launched before to a target
node. Obviously, the above mechanisms cause an increase of
network traffic load due to specific messages used only for
maintaining DHT topology.

In Pastry [4] each node maintains a routing table, a neighbor set
and a leaf set. The last is conceptually similar to the Chord’s
successor list. When some node goes off-line, only leaf sets of its
neighbors are immediately updated; routing tables data are
corrected on demand, only when some peer tries to contact a node
that is currently is not available. So, as in Chord, in Pastry we
have a routing scheme depending on the stability of leaf sets of
single peers (lists of the closest nodes), even if in Pastry lookups
are performed by prefix-matching. Thus, the system resilience in
these cases can be provided only through perfectly and timely
updated contact lists.

Kademlia [3] provides a tree-like data structure of routing
scheme, where network nodes are considered as “leaves” of a
binary tree. Every Kademlia peer stores information about IP-
addresses, UDP-ports and node IDs for a group of nodes from the
interval [2, 2*) for each 0<i<160 sorted by time last seen. Such
contact lists are called k-buckets. Due to the k-bucket mechanism
a node n in Kademlia has at least one contact in each sub-tree, if
that sub-tree contains a node m which has somehow previously
interacted with n. So, any node can locate any other node by its
ID without maintaining lists of the closest peers: it is enough to
“know” any node with the prefix possibly closer to a target node
ID to launch a lookup. Even if some nodes from corresponding k-
buckets have failed and the contact lists have not been updated
immediately, it cannot cause a failure of the lookup. The last-
recently seen eviction policy is applied to minimize changes in
the population of k-buckets and to maintain contacts with the
highest uptime. This results in routing table robustness against
poisoning attacks, where malicious nodes try to pollute contact
list in order to disrupt the execution of RPCs. The time required to
achieve the goal of such an attack depends on the activeness of
honest nodes already present in k-buckets, since as long as they
remain online new nodes (malicious and honest) would do not be
able enter the k-buckets. Under certain node stability
circumstances, such attacks may never succeed.

Lookups are performed iteratively in parallel mode: a host
contacts peers with progressively smaller XOR distances to the
target ID in turn (prefix matching). The symmetry of the XOR-
metric provides peers with a possibility to learn and update
routing information from queries they receive during lookup
processes: routing tables updates are implemented by nodes
automatically, as a “side effect” of ordinary lookups and
interactions with other nodes.

Hence, Kademlia provides better resilience in respect of the DHT-
based algorithms described above due to the routing scheme
based on k-buckets.

Another important aspect in providing system resilience is data
replication that consists in storing a <key,value> pair
corresponding to a certain resource at nodes with the IDs closest
to the key (ID) of the resource in the identifier space. Commonly,
DHT algorithms offer two ways of data replication: the “value”
can represent information about an “address” of a node where a
resource is stored and a brief description of the content
(metadata), as well as the resource itself.

In Chord the replication of data is delegated to applications and it
is implemented by storing resources under two or more different
keys derived from the data’s application level identifier through
hashing procedure. Alternatively, a node can replicate a key/value
pair on each of its successors. Pastry uses the same principle as
Chord for data replication on nodes from successor lists. In
Kademlia, data are replicated by finding & (usually £=20) nodes
closest to a key according to the XOR metric and storing the
key/value pair on them. Therefore, Chord and Pastry allow data
replication only on the application layer through key redundancy
techniques. Kademlia provides data replication on the DHT layer
through storage redundancy, i.e. the same key is stored on
different nodes. Key redundancy mechanisms can also be applied
in order to achieve a suitable data replication level.

So, our interest in Kademlia is motivated by several particular
characteristics of the routing scheme that allows us to suit some
specific requirements regarding resilience and fault tolerance in
distributed collaborative environments. Moreover, the binary tree-
based structure of the identifier space permits both the assignment
of network node IDs and the management of privileges for diverse
work-groups in a simple and intuitive mode. Due to the lookup
through prefix-matching the lookup speed can be increased by
considering b bits (instead of one bit) at each step, reaching a
desired resource in less time.

2.2 Related work

Recently, the idea of applying DHT mechanisms to organize
cooperative storage and data management systems has been
realized in a number of solutions based on different DHT
algorithms: PAST [7], CFS [8], OceanStore [9], OverCite [10],
etc. A detailed comparative analysis of the hash-based P2P
systems listed above is given in [2,8]. Here we just briefly run
through some of them in order to individuate some common
problems of such applications regarding system resilience and
fault tolerance.

The Cooperative File System (CFS) represent a distributed read-
only file storage application based on the Chord data location
service. It is designed as a collection of servers that provide
block-level storage (rather than storing whole files like in PAST)
in combination with a mechanism of virtual servers that helps to
handle the data load balance and spreading blocks of resources
over different servers. Such way of data storage is quite critical
from the point of view of system resilience and fault tolerance in
the case of simultaneous failure of several servers where different
blocks of the same resource are hosted. So, CFS must copy blocks
between servers whenever a node joins or leaves the system in
order to maintain the desired level of replication. Moreover, to
provide the resilience of routing mechanisms based on Chord
principles, clients should maintain an up-to-date server list
(successor lists) as it was described in Section 2.

OverCite is a cooperative digital research read-only library based
on DHT principles that spreads the data load over a few hundred
volunteer servers. It is implemented through partitioning the
inverted index among numerous participating nodes, so that each
node indexes only some fraction of the shared documents.
OverCite uses meta-data-based data storage scheme.

OceanStore is a global persistent storage utility that involves data
privacy mechanisms, guarantees durable strorage and allows
clients to update shared data. However, any data update
(modification) generated by clients can be committed only if it
has been approved by nodes of so called “primary tier”. These
responsible nodes perform a Byzantine agreement algorithm for
conflict resolution regarding data updates. The mechanism of
“primary tier” nodes introduces into the system elements of
hierarchy and centralization that may become critical points of the
network architecture (DoS, flooding, etc). The location service is
implemented through routing scheme based on Plaxton trees
(Tapestry). To provide resilience of the routing mechanisms,
Tapestry exploits network path diversity in the form of redundant
routing paths. It also uses a surrogate prefix-matching routing
scheme, where each nonexistent ID is mapped to some active
node with a similar ID. Nevertheless, all the above mechanisms
significantly augment complexity of the system. Furthermore,
OceanStore assumes that the core system will be maintained by
commercial providers.

The particularity of our solution is the possibility for different
work-groups to cooperate in real time and not only in read-only
manner, but in active regime that allows peers to modify shared
data and to effectuate collective edition (e.g. during a process of
program code writing by different software engineers). We
propose a new resilient resource management scheme based on
Kademlia routing scheme in order to overcome the limitations of
other DHT algorithms. Moreover, we use meta-data storage
mechanisms to cope with resilience problems caused by the
dynamical nature of P2P environment. To improve the fault
tolerance and security components of the proposed solution, a
certificate-based authentication protocol for the lookup procedure
and specific policies for work-groups engaged in different tasks
have been introduced.

3. PREVIOUS WORK

Originally, the solution was meant for a network community
represented by several groups of nodes with different levels (1, 2,
3...) of responsibilities and data access rights.

To effectively manage different data access privileges, we
introduced a new identification system based on use of prefix
identifiers (prefix IDs) for both nodes and resources to handle
read/write permissions in accordance with a certain enterprise
hierarchical model.

We split the Kademlia 160-bit node identifier into two strings of
bits, the former we call prefix_ID, and the latter - node ID. The
length of the prefix string is f bits, and the remaining /60 - S bits
represent the node ID. The prefix defines a level that a
node/resource belongs to. Kademlia tree-like data organization is
easily adaptable to this scheme of ID assignment.

To join the network a node contacts a bootstrap terminal, which
recognizes the level of privileges the node can enjoy by
examining its certificate. Then, the prefix ID predefined for
nodes of this level is assigned to the node. The node ID is
randomly generated by the bootstrap terminal, which also verifies
that the obtained pair <prefix ID; node ID> doesn’t match some
already active node.

The assigned ID expires immediately when a node leaves the
network.

The random attribution of node IDs by a trusted bootstrap
terminal allows avoiding a situation when a malicious node gets a
specific ID in order to access to confidential data (masquerade
attack).

The same prefix-based approach is applied to the process of key
assignment to shared resources. Similarly to the procedure of
node IDs assignment, we divide a key identifier in two strings of
bits that represent the prefix ID (the first £ bits) and the key ID
(the rest 160-p bits). The key ID can be obtained applying a hash
function to the file content, as it is implemented in Kademlia. The
prefix_ID of a resource usually coincides with the prefix ID of
the node that produced it. So, the prefix indicates the level of
“confidentiality” of a file’s content, i.e. if it is for common use or
only for limited use of certain work-groups.

Resource management in the previously proposed solution was
implemented in accordance with the privilege management
scheme and with the corresponding read/write permissions.
According to this scheme, nodes of the first (highest) level can
get, modify, store and cancel files produced by nodes of any level.
Nodes of each lower level (starting with the 2" level) are enabled
to access and modify files created/hosted by peers of the same-
name level and other inferior levels as well.

Finally, nodes of the lowest level n can access and modify data
produced only by peers of the same level. At the same time, some
types of data should be accessible and shared by all users (for
example in enterprise environment such data could include
administrative circulars, recommendations, instructions, etc).

According to these access rules a prefix-based node ID
mechanism was introduced where f bits out of » bits of the ID are
used for a group and permission-driven prefix. This leads to a
strong correspondence between the level of data confidentiality
(represented by the prefix ID) and their actual location (identified
by the resource key):

dist(ID, key) < 2"~

This inequality imposes an upper bound to the distance between a
key and possible target nodes. Likewise, if the identifiers of two
nodes satisfy this condition, they reside at the same sub-tree and
belong to the same work-group. We call such distribution of data
access rights - strict scheme for hierarchical resource management
(Figure 1). Such scheme is suitable for environments with a rigid
hierarchy and strongly defined policies like enterprise networks
described in our previous work [6].

In accordance with the strict scheme, nodes of different levels
have at their disposal identifier spaces of different dimensions to
implement data storage procedures: it looks like using different
zones of the “global” DHT by different groups of users. In terms
of Kademlia, the DHT zone for nodes that handle resources with
the highest level of confidentiality is limited by the same-name
sub-tree regarding publishing data.

To avoid such limitations we propose a new resilient resource
management scheme that will be described in the next section.

Level 1 (1)

.

Figure 1. Strict scheme for hierarchical resource management

4. NEW RESILIENT RESOURCE
MANAGEMENT SCHEME

Due to the constraints imposed by the confidentiality-based
resource management scheme described above, in case of equal-
distribution of the number of nodes and resources for different
priority levels, the number of potential locations (target nodes) for
resources of lower levels is significantly larger than for those of
higher levels. Hence, nodes and resources of the highest level
enjoy less redundancy. This fact can affect the system’s fault
tolerance in the case when a large percentage of the nodes of the
highest level are off-line.

To enforce the fault tolerance and resilience of the system in such
situations we propose a flexible scheme for group resource
management (Figure 2), supported by a hierarchical and policy-
based data access mechanism.

Figure 2. Flexible scheme for group resource management
(unique DHT)

This scheme provides the possibility to exploit the entire DHT
space by peers of any level for the publication of meta-data
according to the original DHT principles. In Kademlia (as well as
in other DHTs) a “value” associated with a certain “key” can
contain either the resource itself (preferably small size data) or
just some information about its location and some resource
description (meta-data). Our proposal follows the latter approach
that has the double advantage to limit the amount of data stored
and managed by the DHT and to let network nodes to maintain
DHT information (key-to-meta-data mapping) regardless the
particular access level of the specific resource associated to such
information. This in turn increases the number of nodes that
collaborate on the maintenance of the DHT, and hence
strengthens the DHT robustness. The absence of any strict rule for
computing and assigning identifiers lets nodes and resources be
arranged uniformly into a unique DHT, instead of forcing nodes
or resources to be located at specific zones of the DHT space.
Note that in this way the DHT is strictly used as distributed
location registry rather than an actual storage system.

We propose to use the Kademlia DHT to store and retrieve meta-
data information about the resources in preference to
implementing a distributed file system, such as Oceanstore. This
choice is due to a series of reasons.

First of all, storing actual data directly into the DHT implies data
“migration” from node to node as the overlay reorganizes itself
when nodes join and leave. The network traffic caused by data
transfer can be significant if the churn rate is high and stored
resources are numerous. Therefore, in order to avoid the network
overload, sizes of data being passed from node to node should be
small. Moreover, in a flexible scheme for distributed collaborative
environment like the one we propose, it might happen that a
resource belonging to some working group has been stored by a
node that does not belong to that group. Therefore, a security
issue arises, since the hosting node could potentially access the
actual data even if it has not the right to access that resource.
Using meta-data information in place of the actual resource
avoids this issue. Location information contained by the meta-
data are then used only by an authorized user to discover and
access the actual resource.

Finally, meta-data can contain additional information about the
resource, such as the publisher information, a last-update
timestamp, and a signature (hash of the resource content signed
with the publisher’s private key, used for resource authentication
and integrity check).

We chose to represent such meta-data information in XML
format. An example of such XML-formatted data is the following:
<resource>

<key>aOblc2d3ed..</key>
<name>http://www.mynet.org/docs/file.pdf</name>
<uri>http://80.10.1.2:8080/www/docs/file.pdf</uri>
<publisher>ff0123bcae..</publisher>
<access_rights>12</access_rights>

<expires>MON Oct 06 09:00:00 GMT 2008</expires>
<updated>MON Jun 08 09:00:00 GMT 2008</updated>

<signature>fabc234678..</signature>

</resource>

Therefore the DHT is used as a location registry that can be used
to discover where the desired resource can be found. This
information is specified in the uri tag which contains a routable
URI containing in turn HostPort information (in order to by-pass
any centralized DNS system) and other resource-related
information useful for characterizing and/or accessing the
resource.

Note that this approach, combined with the 'data:' URI scheme
(RFC 2397) potentially allows the achievement of a persistent
storage system. In fact, such URI scheme allows to store data
directly inside the URI that in turn is included in the meta-data
stored within the DHT and maintained by the DHT regardless the
publishing node has left the overlay. The URI contains the data
itself and not information on the location. Hence, the publishing
node can leave the overlay while the data remains in the DHT.
Obsolete data must be removed explicitly by the publisher or
updated through successive put () operation. Obviously, this
feature should be used only for small size data, that is, if the
'data:' URI is not excessively long, in order to limit the overall
amount of traffic spent for the DHT management operations.

All DHT management operations are protected by some
certificate-based security mechanisms described in the next
section.

5. CERTIFICATE-BASED DHT
PROTECTION

The proposed system architecture and all peer communications
are protected through some security mechanisms based on
certificate-based security architecture. Particularly, certificates are
used to:

1. authenticate (signing) meta-data containing information about
the location, the publisher, the access rights of a resource; this
allows at any time a receiving peer to verify the resource’s
contents through the check of the given signature;

2. ensure resource data protection when the actual resource is
accessed after the lookup mechanism has been succeeded;

3. control that meta-data are available only to nodes that are
granted the appropriate access privileges;

4. protect the DHT against poison attacks, both for resources and
for routing table entries;

5. optionally secure all DHT operations by enforcing
cryptographic confidentiality.

DHT protection is achieved through some modifications of the
original Kademlia protocol RPCs that will be next described.
Such changes present some drawbacks such as a higher number of
exchanges messages and a higher processing time to compute and
verify the digests. However, the increased network bandwidth and
computational power available nowadays make these problems
trivial and totally acceptable in order to achieve a highly resilient
and fault-tolerant system.

We assume that there is one central Certification Authority (CA)
called DHT CA, and as many CAs as the number of work groups
that belong to the DHT. The DHT CA is responsible for issuing
certificates for the group CAs. User certificates are issued by
group CAs.

Certificates are used for protecting i) the DHT, by authenticating
DHT messages as described below, and ii) the resources, by
authenticating and securing communications for the actual
resource access (e.g. file transfer, copy, etc.).

User certificates are used during the bootstrapping phase and
subsequently during each operation inside the DHT. User
certificates are basically X.509 certificates with the addition of
those extensions needed for group management.

We also assume that each group has some super-nodes that serve
as bootstrap nodes, which are nodes with the following features:

- they are always on;

- they are active elements of the distributed system and
therefore participate in the storage of resources.

A node receives its certificate and identifier from the CA of the
group it belongs to. The bootstrap node first verifies the identity
of the joining node. Identifiers are assigned by CAs. The process
joining is basically divided into the following steps:

1. the bootstrap node verifies the certificate of the joining node
and checks if it belongs to the same group;

2. the bootstrap node also verifies that the node ID is not already
in use by performing a PING request for the ID, thus
preventing Sybil attacks.

If a joining peer contacts a bootstrap node responsible for another
group, the bootstrap node, after verifying the peer’s credentials, it
will redirect the request to the appropriate bootstrap node
responsible for such group. Bootstrap nodes should then know
how to contact other bootstrap nodes responsible for the other
groups; this can be achieved through different mechanisms, such
as pre-configured list of nodes, caching, node discovery service,
etc.

Certificates are also used to protect (ensuring authentication and
optionally confidentiality) all successive DHT requests.
Encryption and decryption are performed by using the public-key
RSA algorithm. In general, to ensure DHT protection, all non-
idempotent procedures (procedures that cause changes in the DHT
structure) should be protected. In Chord, for instance, all RPCs
but get() should be protected. In Kademlia, all RPC are non-
idempotent since all messages are used to update the k-buckets of
the receiving peers. Therefore, the original Kademlia RPC
protocol has been properly extended in order to protect also the
following RPC requests: PING, FIND_NODE, FIND VALUE
(ak.a. DHT GET), and STORE (DHT PUT). Mutual
authentication is implemented in order to authenticate the server-
side node as well (Figure 3).

Cryptographic confidentiality could be optionally provided in the
DHT if the needed security level would require doing so.

Another security feature that can be optionally provided is a
privilege-based access policy for DHT data access. Certificates
are used to verify the identity of the requestor and to learn about
the requestor’s rights. Requests are fulfilled only if the
authentication process succeeds and if the request pertains to a
resource whose access rights are suitable for the user’s credentials
(access rights are defined in the meta-data stored in the DHT and
associated to the various resources).

User A User B

Request

Challenge,

Request + Digest, + Challenge, + Cert,

{{Response}ypham + Digest, + Certy

Figure 3. Authentication mechanism inside DHT requests

The first time a node wants to send a DHT request to another
node (for example to issue a DHT GET request) it sends such
request without any specific credential. When the target node
receives such request it responds with an authorization request
message including an authorization challenge together with
information regarding the DHT realm. The requestor then resends
the request together with its user certificate, group certificate, and
the challenge response computed with the challenge, the DHT
realm, the user and group IDs, and the user private key associated
to the user certificate (it just encrypts with its private key the
message digest of a combination of the challenge, DHT realm,
user, and group IDs). It also adds to the request a client challenge
used for server node authentication. When receiving such new
request, the target node uses the DHT CA certificate to verify the
group and user certificates, and then uses the user public key to
verify the challenge response (it actually decrypts the challenge
response and compare it with the message digest computed on the
same combination of information). It then calculates the response
to client challenge (in the same way of the requestor node) and
includes it to the response message together with its user and
group certificates and with a new “next” challenge. When the
requestor receives such response, verifies the message, optionally
stores the new “next” challenge, and keeps on with the DHT
algorithm. The “next” challenge is provided to the requestor in
order to speed up eventual successive request messages sent to the
same target node: for successive requests the requestor may try to
use such challenge for composing an authenticated request, thus
reducing the total number of needed messages from four to two.
Although such four (or two) messages authentication can be
forced for each DHT request, in order to speed up the DHT
operation a last hop authentication could be preferred, which
means to challenge only the (last) request to the node that is
actually responsible for the targeted resource (the meta-data
associated to the resource). However, if this approach is used,
some attacks like message hijacking or DoS might occur, since
the verification is performed only at the end of the procedure and
intermediate steps are blindly trusted. To avoid this, the
challenge-digest verification should happen at each hop.

The mutual authentication mechanism proposed introduces an
overhead in the execution time of each RPC. This overhead is due
to the fact that each RPC consists of four messages instead of two
and cryptographic operations must be performed on each node to
perform authentication. We can split the execution time of each
RPC into the following components: the round-trip time of

message delivery (7};), the request processing time (77,), the

and T,

respectively). The original Kademlia RPCs take a total time:
T=Ty+T,

digest computation and verification time (7.

The new authenticated versions of the Kademlia RPCs take a total
time:

T'=2Ty +T, + 2T, +2T,, = 2T, + T, + 2T,

This means that the authentication mechanism introduces an
overhead:

O=T'-T =T,, +2T,,,

In our work, we made some simulations to measure the incidence
of cryptographic operations. Our tests were made on a Pentium4 3
GHz with 1 GB RAM machine. Our simulations, with our Java-
based implementation of RSA operations, showed that the
aggregate time for RSA digest computation and verification is in
average (on 1000 iterations) approximately 70 ms (1,,= 69 ms,

T,, =1ms).
We can conclude that if the T, is prevalent (i.e. T,,>>T))
then the overhead can be approximated by another T, , while in

networks with little 7.,

the overhead is only due to the cryptographic operations, which
are however quite fast. Therefore, the overhead introduced is
absolutely acceptable if compared with the achieved resilience
and security.

such as wideband enterprise networks,

Note that if the authentication fails, then the request is not
propagated nor iterated in the overlay and no additional time is
spent by the DHT.

Confidentiality can be optionally introduced by performing key
establishment through Diffie-Hellman algorithm secured through
certificate-based signing and by encrypting data with such
transaction key (ensuring both authentication and confidentiality).
Certificate-based authentication prevents also from some typical
DHT attacks [11, 12] leaded by unauthorized malicious users such
as Sybil attacks. In fact, with the proposed operation the identity
of a user is strictly related to the certificate and certificates are
issued only to users that are granted to participate to the DHT.

6. ENFORCING APPLICATION-LAYER
SECURITY

Authentication enables DHT protection, that is, requests are
routed in the DHT only if the credentials of the requestor and
target are certified and the corresponding messages are verified.

Although this mechanism prevents unauthorized users to request
information about the location of resources for which they does
not have proper rights, this does not prevent low level users to

User A User B

r DHT-get (X)

Challenge

User A is
authenticated
Session key is

agresd upon

DHT protection \<
User B is
authent icated [

Digest + challenge

Response + Digest

- Application-get(X)
Challenge
Application— \<
layer securit:
i & Digest
Response

\

Figure 4. Application layer security

obtain location information about resources that they are
maintaining meta-data information within the DHT according to
the DHT algorithm. Moreover, since encryption of DHT RPC
responses has not been made mandatory, eavesdropping could be
still used to access to DHT data and hence to resource location
information. For this reason a proper certificate-based security
mechanism must be also introduced at application level in order
to protect resources from illegal access. Although the definition of
a specific authentication and encryption protocol used at
application level is out of the scope of this document, in the next
section is proposed a possible implementation in which both DHT
RPC protocol and application resource access protocol use an
extension of Session Initiation Protocol (SIP) [13] with a
certificate-based authentication mechanism. The overall operation
is summarized in Figure 4.

7. IMPLEMENTATION

The proposed distributed collaborative mechanism has been
implemented in a demonstrative testbed. Such implementation
comprises all mechanisms for allowing a network node to join a
DHT, publish a resource in the DHT (DHT put), search for a
specific resource (DHT get) for which the user has right access
credentials, and access the selected resource by getting if from the
location obtained by the DHT. Hence, the implementation
includes both the protocol for DHT maintenance and the protocol
for resource access according to the proposed security
mechanisms.

Both protocols have been based on the SIP (Session Initiation
Protocol) specified by the IETF [13]. SIP is an extensible
application-layer UDP-based signalling protocol that permits to
initiate, modify, and tearing down multimedia sessions in a peer-
to-peer fashion. Particularly, for the DHT maintenance an
extension of SIP based currently proposed within the IETF
P2PSIP Working Group and called dSIP [14] has been used. Such
protocol was designed in order to allow for compatibility with any
DHT algorithm. Support for the Chord DHT was also defined. A
specification for Kademlia has been defined in [15] and it is the
protocol used in the implementation.

The resources are accessed via other protocols, opportunely
extended with the proposed -certificate-based authentication
mechanism. Currently only a SIP based mechanism has been
already implemented by using a new GET message (similar to the
HTTP GET [16]) to fetch specific resources. The implementation
has been based on Java technology. The DHT maintenance (dSIP
[14]) and resource access protocol have been realized based on
the SIP implementation provided by the MjSip open project [17].
Certificate issuing and authentication aspects are based on the SIP
digest-authentication scheme proposed in the SIP RFC and
currently being implemented and tested.

8. CONCLUSIONS

In this paper we presented a new resilient resource management
scheme based on Kademlia lookup mechanisms for distributed
collaborative environments. The proposed solution combines an
efficient and robust lookup mechanism based on Kademlia DHT
with a certificate-based authentication and authorization scheme
for securing resource access in collaborative environments
consisting of different work-groups. We also proposed to apply
meta-data-based storage mechanisms to cope with resilience
problems caused by the dynamical nature of P2P environment.
The described approach significantly differs from that proposed in
our previous work: in the new one network nodes exploit the
entire DHT ID space for resource management instead of
realizing storage/retrieval mechanisms only within the groups
they belong to, in accordance with confidentiality principles. So,
we tried to extend and generalize our solution in order to address
some common problems regarding resilience and fault tolerance
of distributed collaborative systems based on DHTs.

To enforce DHT protection, a robust two-way authentication (and
optionally confidentiality) mechanisms have been introduced.
Moreover, in order to avoid problems regarding unauthorized data
accesses at the application-layer we proposed to apply specific
certificate-based authentication and authorization mechanisms
according to the rules specified for the DHT layer. Finally, the
described mechanisms for collaborative resource management and
data access have been implemented in a demonstrative testbed.
These functionalities have been realized through a properly
designed communication protocol based on SIP.

9. ACKNOWLEDGMENTS

This work has been partially supported by the Italian
Ministry for University and Research (MIUR) within the
project PROFILES under the PRIN 2006 research program.

10. REFERENCES

[1] Balakrishnan H. et al., “Looking Up Data in P2P Systems”,
Communications of the ACM, Vol. 46, No. 2, pp.43-48, Feb.
2003.

[2] Stoica I., Morris R., Karger D., Kaashoek M.F.,
Balakrishnan H. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. In Proceedings of
SIGCOMM-2001, San Diego, California, USA, August
2001.

[3] Maymounkov P., Mazi¢res D., “Kademlia: A Peer-to-peer
Information System Based on the XOR Metric”, In
Proceedings of the 1st International Workshop on Peer-to-
peer Systems, MIT, March 2002.

[4] Rowstron A., Druschel P. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In
Proceedings of the 18th IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware 2001), March
2002

[5] Zhao B.Y., Huang L., Stribling J., Rhea S.C., Joseph A.D.,
Kubiatowicz J.D. Tapestry: A Resilient Global-Scale
Overlay for Service Deployment. IEEE J-SAC, 22(1),
January 2003.

[6] Fedotova N., Fanti S., Veltri L. Kademlia for Data Storage
and Retrieval in Enterprise Networks. In Proceedings of the
Third International Conference on Collaborative Computing:
Networking, Applications and Worksharing
(CollaborateCom-2007), November 12 -15, 2007 — New
York, USA.

[71 Rowstron A., Druschel P. Storage management and cashing
in PAST, a large-scale, persistent peer-to-peer storage utility.
In Proceedings of the 18th ACM Symposium on Operating
systems Principles, October 2001

[8] Dabek F., Kaashoek M.F., Karger D., Morris R., Stoica I.
Wide-area cooperative storage with CFS, In Proceedings of
the 18th ACM Symposium on Operating systems Principles,
October 2001

[91 Kubiatowicz J. et al. OceanStore: An Architecture for
Global-Scale Persistent Storage”. In Proceedings of
ASPLOS’2000, Cambridge, Massachusetts, USA,
November, 2000

[10] Stribling J., Councill I.G., Li J., Kaashoek M.F., Karger D.,
Morris R., Shenker S. OverCite: A Cooperative Digital
Research Library, In Proceedingd of the 4th International
Workshop on P2P Systems (IPTPS05), February 2005

[11] Sit E., Morris R., “Security considerations for Peer-to-Peer
Distributed Hash Tables”, in Proceedings of the First
International Workshop on Peer-to-Peer Systems
(IPTPS’02), Cambridge, March 2002.

[12] Douceur J.R. The Sybil Attack, In Proceedings of IPTPS-
2002, March 2002

[13] Rosenberg J., Schulzrinne H., Camarillo G., Johnston A.,
Peterson J., Sparks R., Handley M., Schooler E. "SIP:
Session Initiation Protocol", RFC 3261, June 2002.

[14] Bryan D. "dSIP: A P2P Approach to SIP Registration and

Resource Location", IETF Internet Draft draft-bryan-p2psip-
dsip-00, February 2007.

[15] Cirani S., Veltri L. “A Kademlia-based DHT for Resource
Lookup in P2PSIP”, IETF Internet Draft draft-cirani-p2psip-
dsip-dhtkademlia-00, October 2007

[16] Fielding R., Gettys J., Mogul J., Frystyk H., Masinter L.,
Leach P., Berners-Lee T. "Hypertext Transfer Protocol -
HTTP/1.1", RFC 2616, June 1999.

[17] M;jSip project, http://www.mjsip.org.

